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Large protein assemblies, such as virus capsids, may be coarse-grained as a set of rigid units linked by
generalized �rotational and stretching� harmonic springs. We present an ab initio method to obtain the elastic
parameters and overdamped dynamics for these springs from all-atom molecular-dynamics simulations of one
pair of units at a time. The computed relaxation times of this pair give a consistency check for the simulation,
and we can also find the corrective force needed to null systematic drifts. As a first application we predict the
stiffness of an HIV capsid layer and the relaxation time for its breathing mode.
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I. INTRODUCTION

Large protein assemblies are pertinent to most of the soft-
matter physics in cells; how can one calculate their elastic
properties and corresponding dynamics? Such assemblies are
too large to handle by all-atom simulations, but numerical
coarse graining techniques are opening the door to direct
simulations �1�. An ideal coarse graining would involve
rather simple parametrizations for the purposes of human
understanding, analytic treatment, transmission to other re-
searchers, and building up coarse-grained models �2�. In this
Rapid Communication we present an approach to extract
such simplified parameters from all-atom molecular-
dynamics �MD� simulations of small subsystems. Our ap-
proach should generalize well to any system in which the
proteins are primarily structural. Moreover, because our
simulations involve only a few proteins, they are tractable
even without supercomputers.

Our program is to break up a large assembly as a network
of many discrete units connected by several kinds of �typi-
cally� pairwise interactions modeled as generalized springs.
We treat each unit—typically a single protein or domain—as
a rigid body, which thus has only six degrees of freedom. We
approach each interaction, one kind at a time, by simulating
just the pair of interacting units and measuring the trajectory
x�t� of the positions and orientations of each unit. Our aim is,
from these observed trajectories, to extract the parameters for
an effective Hamiltonian and equation of motion for each
spring, and then reassemble the springs into the coarse-
grained network.

We model x�t� as an overdamped random walk in a �bi-
ased� harmonic potential. This walk is parametrized prima-
rily by two important tensors: one to describe the shape of
the harmonic well, and the other to describe the �mainly
hydrodynamic� damping and the associated stochastic noise.
Combining these tensors gives a matrix whose eigenvalues
are the relaxation rates. Thus by measuring short-time dy-
namic correlation functions together with the position distri-
bution, we can identify whether the simulation has suffi-
ciently sampled the equilibrium ensemble during the
simulation time, or in case of an overall drift, we can com-
pute the external forces needed to shift the equilibrium to the
biologically proper configuration. This is similar in spirit to
computing a potential of mean force or free-energy land-

scape with Jarzynski’s equality �3�, except that our coarse-
grained x has more than one component, and �at minimum�
represents angular degrees of freedom in addition to stretch-
ing. As an application, we simulate several interdomain in-
teractions in the HIV capsid and estimate the Young’s modu-
lus �which can be measured experimentally� and Poisson
ratio of the capsid lattice, as well as the relaxation rate of the
breathing mode.

II. COARSE GRAINED STOCHASTIC DYNAMICS

We represent our system as a vector of generalized coor-
dinates xi, i=1. . .N, where N is far smaller than the number
of atoms and is obtained by some form of coarse graining.
Our objective is to parametrize and determine from simula-
tion �i� an effective free-energy potential function U�x�, and
�ii� an equation of motion, for the coarse-grained coordi-
nates.

We assume the coarse-grained degrees of freedom are
overdamped: this is true at time scales much longer than the
“ballistic scale” �tbal��m�1 ps, where m�10 kDa is the
mass of a protein� and the period of local bond vibrations
��0.1 ps�. Then the dynamics is a continuous-time random
walk,

dx

dt
= �f�x,t� + ��t� , �1�

where � is the �symmetric� mobility tensor, f�x , t� is the
force, ��t� is a �Gaussian� stochastic function satisfying

���t� � ��t��� = 2D��t − t�� , �2�

and D is the diffusion tensor. For detailed balance, D
=kBT� at temperature T. We can expand the potential to
second order about a point x�,

U�x� = U0 − f� · �x − x�� +
1

2
�x − x��K�x − x�� , �3�

where K is the �symmetric� stiffness tensor; then the force in
Eq. �1� is f�x�= f�−K�x−x��. From measuring coordinate co-
variances in the simulation, we obtain K,

G � ��x − x�� � �x − x��� = kBTK−1. �4�

If the static effective potential were our only interest, and
if our runs were always long enough to equilibrate our sys-

PHYSICAL REVIEW E 81, 030903�R� �2010�

RAPID COMMUNICATIONS

1539-3755/2010/81�3�/030903�4� ©2010 The American Physical Society030903-1

http://dx.doi.org/10.1103/PhysRevE.81.030903


tem, there would have been no need to model the dynamics
�Eq. �1��. As we do need the dynamics, we determine the
diffusion tensor D �and hence �� by measuring the correla-
tion function at short times between the ballistic and relax-
ation time scales �see below� during which the deterministic
term in Eq. �1� is less important than the noise:

D =
��x�t�� − x�t�� � �x�t�� − x�t���

2	t� − t	
�

W�t� − t�
2	t� − t	

. �5�

We calculate D by fitting W��t� to a line over offsets tbal
��t��, the relaxation times, weighting each point by
�W

2 ��t�� ��t�3. Notice that since � pertains to short-time
dynamics, it is correctly measured even in runs too short to
equilibrate in the potential well.

If we transform into coordinates x̃��−1/2x then the equa-
tion of motion becomes

dx̃

dt
= �1/2f� − R�x̃ − x̃�� + �̃�t� , �6�

where

�	̃
�t�	̃��t��� = 2kBT�
���t − t�� , �7�

and the relaxation matrix R=�1/2K�1/2 �which has units
�time�−1� is simply the stiffness tensor in our transformed
frame. The eigenvalues of R are the decay rates �


−1 for the
relaxation normal modes 
.

The correlation time for a mode is the same as its relax-
ation time, so the relative error in K for mode 
 is of order

�
 /�run, where �run is the total run time. Thus, if all the �


��run, our estimate �Eq. �4�� of K is valid. But if �
��run for
some direction, not only are errors large but the initial devia-
tion may still be relaxing over the entire run, which is often
visible as a steady drift of the coordinates with mean velocity
v. Averaging over time gives a large spurious variance in the
drifting directions, leading to an underestimate of the corre-
sponding stiffness.

III. APPLICATION TO HIV CAPSID

The elastic and dynamic properties of viruses in general
are of particular importance in understanding the mecha-
nisms by which they assemble and disassemble. The assem-
bly must be reliable enough to produce capsids capable of
surviving the harsh intercellular environment, while still be-
ing able to disassemble upon entering a new host cell. HIV in
particular is unique because of its characteristic conical
capsids �4�, whose mechanism of formation is yet unsettled.

The HIV capsid protein �CA� consists of two globular
domains: the larger 145-amino acid N-terminal domain
�NTD� has a radius 1.3nm and the smaller 70-amino acid
C-terminal domain �CTD� has a radius 1.7nm; we treat these
as two separate units. The NTD and CTD are connected
covalently by a flexible linker; there is also an NTD-NTD
interaction �which forms hexamers in the capsid structure�, a
CTD-CTD interaction �which forms symmetric dimers in the
structure�, and an NTD-CTD interaction between neighbor-
ing proteins around a hexamer. These four interactions are
shown in Fig. 1�a�. We believe the NTD-CTD interaction to
be the weakest, and the known structure is also poorest, so
we will ignore it from now on. We therefore simulate each
other pair in isolation, using structures from the Protein Data
Bank �5�.

We carried out our simulations using a modified version
of the NAMD �6� package with the CHARMM22 force field.
Our proteins are in a periodic cell 5 to 9 nm to a side using
the TIP3P model for explicit water and 0.1 M NaCl, run with
2 fs time steps for a total of 3 ns each. We do most of the
work at constant pressure and temperature �NPT�, using a
Langevin piston barostat at P=1 atm, and a Langevin ther-
mostat at T=310 K and damping rate �L=5 ps−1. The NPT
simulations model the statics well, but the thermostat’s
damping leads to unphysical dynamics with increased relax-
ation rates. This allows shorter simulations to equilibrate, but
prevents us from determining the rates we should expect to
see in reality. We therefore do a second measurement of dif-
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FIG. 1. �a� Diagram of interactions in the HIV capsid lattice. The black and white shapes represent the dimer-forming CTD and the
hexamer-forming NTD, respectively. Springs represent the three different bonds we are interested in, and dotted lines represent the fourth
bond we are ignoring. �b� Relaxation mode trajectories of linker. The mode coordinate has units of 
ns because it has been normalized by
the noise. The slower modes are drawn with thicker lines. Note that the slowest mode has a very small drift, and we could correct this by
applying an external force. The traces have been smoothed with a low-pass filter for readability.
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fusion at constant volume and energy �NVE�.
The center of mass and global rotation of the pair ac-

counts for six trivial degrees of freedom; the remaining six
represent the relative position and orientation of the two
units. Of these six, only one is a pure translation: the distance
r= 	r2−r1	 between the center of each unit. The orientation of
unit m can be represented by a rotation matrix �m which
rotates the unit from its reference orientation by an angle 	m	
about the axis ̂m. The even and odd combinations 1�2
give six degrees of freedom that comprise the remaining five
coordinates, along with an overall rotation due to the even
combination about the interbody axis r2−r1.

As we simulate just one pair of units from a protein com-
plex, we omit the forces and torques on them due to the other
units in the lattice, which generically had a nonzero resultant.
In order to expand the free energy around the physiologically
relevant configuration, we must add external forces to com-
pensate; in light of Eq. �1� the correct force to impose is
given by f�=−�−1v, where v is the drift velocity measured in
the absence of the compensating force. This was not impor-
tant for the pairs reported in our results.

IV. RESULTS

The results for each simulation were similar, and the tra-
jectory of the linker in the transformed relaxation mode co-
ordinates is shown in Fig. 1�b�, which is characteristic of all
the observed trajectories. Once we have an equilibrated seg-
ment of a trajectory we use Eq. �4� to determine the 6�6
stiffness tensor K; different components have different units,
so it would be mathematically meaningless to diagonalize it
directly. Instead, we define reduced stiffness tensors, repre-
senting the free-energy cost if we optimize r for a fixed set of
angles and vice versa. Given

K = �Krr Kr

Kr K
� , �8�

then integrating out the orientations �for Kstretch� and the
stretch �for Korient� gives

Kstretch
�eff� = Krr − KrK

−1Kr �9�

Korient
�eff� = K − KrKrr

−1Kr. �10�

The eigenvalues of these reduced tensors are given in Table
I.

We computed the stiffness tensor implicitly in the relative
coordinates between the two bodies, but the absolute coordi-

nates are the natural frame for computing the noise. Measur-
ing the diffusion of a single body in an NVE simulation
yields a mean DCTD

�rot� =0.11 rad2 /ns and DNTD
�rot�

=0.044 rad2 /ns. If we approximate each domain as a solid
sphere then Stokes’ law gives a rotational diffusion constant
D�rot�=kBT / �8��r3� �7�. We thus expect DCTD

�rot�

=0.11 rad2 /ns and DNTD
�rot� =0.050 rad2 /ns using a viscosity

��310 K�=0.69 cP. The accepted TIP3P viscosity ��TIP3P�

=0.31 cP gives poorer agreement.
The translational diffusion constant is slightly harder to

measure, since it is influenced significantly by the finite-size
effect �8�. This can be corrected for by measuring the diffu-
sion at several box side lengths L and using a linear fit of
D�tr� versus 1 /L to extrapolate to 1 /L=0. Doing so yields
DCTD

�tr� =55 Å2 /ns and DNTD
�tr� =27 Å2 /ns. Stokes’ law gives

expected DCTD
�tr� =56 Å2 /ns and DNTD

�tr� =43 Å2 /ns using
��TIP3P�=0.31 cP. The measured D�tr� has a significantly
larger relative error than D�rot�, due to the finite-L extrapola-
tion.

We can diagonalize the relaxation matrix to compute the
relaxation modes for each linkage. The NPT relaxation times
from this calculation are listed in Table II. All the times are
significantly shorter than the simulation time, so we can be
confident that the simulations are equilibrated.

Finally, we can compose these generalized springs to-
gether into a triangular lattice as shown in Fig. 1�a�, with an
NTD hexamer at each vertex, a CTD dimer at the midpoint
of each edge, and a spring connecting each domain, whose
free energy is given by the relative positions multiplied into
the appropriate stiffness tensor. We can then determine the
free-energy minimum as a function of periodic cell dimen-
sions to find a lattice constant of a=9.1 nm. This is slightly
smaller than the experimentally measured 10.7 nm �4�,
which may be largely due to our sheet being flat, rather than
curved into a tube. Computing the free energy of simple
extension yields a two-dimensional Young’s modulus of
0.92kBT /Å2=0.39 N /m and a Poisson ratio of 0.30. Assum-
ing homogeneity and a thickness of 5 nm, we find a three-
dimensional Young’s modulus of 77 MPa �compared with
115 MPa measured using atomic force microscopy �9��.

Furthermore, we can estimate the relaxation rate of the
full-capsid breathing mode in water by further coarse grain-
ing to a single coordinate a representing a uniform dilation in
the plane, which has dynamics given by Eq. �1� with stiffness
and mobility constants Ka and �a. The projected stiffness is
given by the bulk modulus Ka=4K�2d�=2.6kBT /Å2, calcu-
lated from the 2d Young’s modulus and Poisson ratio. To
project the damping term, we observe that all the actual mo-
tion in the breathing mode of a virus capsid of radius r is in

TABLE I. Effective stiffness eigenvalues for pair simulations:
NTD dimer, CTD dimer, and the NTD-CTD linker within the CA
protein.

Kstretch
�eff�

�kBT /nm2�
Korient

�eff� eigenvalues
�kBT�

NTD-NTD 12 1300 2800 4500 10000 18000

CTD-CTD 9.9 210 340 1100 3900 8300

Linker 2.8 130 250 480 1100 3800

TABLE II. NPT time constants for the relaxation modes of each
pair.

Relaxation times �


�ps�

NTD-NTD 120 23 18 9.3 6.0 4.4

CTD-CTD 76 26 24 7.8 5.4 4.1

Linker 190 140 80 76 22 8.3
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the radial direction, and we thus need to scale the capsid
protein’s translational diffusion constant by �da /dr�2 to find
the diffusion constant for a. Using the detailed balance con-
dition,

�a =
16�
3

N

DNTD
�tr� + DCTD

�tr�

kBT

��TIP3P�

��310 K� , �11�

where N=16�
3r2 /a2 is the total number of capsid proteins
�10�. Taking N=1500 proteins as the average size for an HIV
capsid thus gives a relaxation rate of 6.1 ns−1 for the breath-
ing mode.

V. DISCUSSION

In conclusion, we have reported a model of overdamped
random walks in which the statics and dynamics are de-
scribed respectively by complementary “stiffness” and “mo-
bility” tensors. From these two tensors a “relaxation matrix”
can be formed, the eigenvalues of which give the relaxation
rates and provide a convergence test for simulations. We
demonstrated the usefulness of this model in extracting
coarse-grained elastic constants from molecular-dynamics
trajectories of pairs of interacting units.

While our relaxation formalism is unusual in combining
stochastic dynamics with a realistic multicomponent spring,
it bears some similarities to certain more familiar techniques.
Normal mode analysis, and in particular, Gaussian network
models, replace interactions �either between atoms or groups
of atoms� with springs of uniform stiffness �11�. While these
techniques have been successful in determining the soft de-
grees of freedom to explain reaction pathways such as virus
maturation �12,13�, the frequencies themselves are well
known to be artificial because they omit the damping forces

of the surrounding water �this has been addressed by Lamm
and Szabo �14� with their “Langevin modes”�. Additionally,
most of these techniques are insensitive to point mutations or
environmental conditions. On the other hand, “essential dy-
namics” �or “principal component analysis”� �15� uses all-
atom simulations to determine the soft modes of a system.
Moreover, Hayward et al. �16� suggested specifying impor-
tant modes a priori, which is our starting point. We extend
these approaches by using the same principal components �to
wit, the position and orientation� for each unit to connect the
different interactions, and by using the relaxation modes to
predict the dynamics ab initio.

Our technique is not specific to virus capsids: a similar
approach should be applicable to many other systems of in-
teracting protein domains, such as microtubules or BAR do-
mains. Among virus capsids, HIV was particularly amenable
because all the important interactions are pairwise, while
many other viruses are complicated by long tails in which all
six molecules in the hexamer are entwined. In the future, we
plan to look at the effect of point mutations, salinity, and pH
on the resultant elasticity �which could then be verified by
experiment�; and to investigate further the properties of our
generalized springs. We hope that the techniques presented
here will provide a convenient middle ground between the
atomistic and continuum pictures of many biological sys-
tems.
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